On Cayley representations of central Cayley graphs over almost simple groups

نویسندگان

چکیده

A Cayley graph over a group G is said to be central if its connection set normal subset of G. We prove that every simple has at most two pairwise nonequivalent representations associated with the subgroups $${{\,\mathrm{Sym}\,}}(G)$$ induced by left and right multiplications also provide an algorithm which, given $$\Gamma $$ almost whose socle bounded index, finds full in time polynomial size

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing isomorphism of central Cayley graphs over almost simple groups in polynomial time

A Cayley graph over a group G is said to be central if its connection set is a normal subset of G. It is proved that for any two central Cayley graphs over explicitly given almost simple groups of order n, the set of all isomorphisms from the first graph onto the second can be found in time poly(n).

متن کامل

On the eigenvalues of Cayley graphs on generalized dihedral groups

‎Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$‎. ‎Then the energy of‎ ‎$Gamma$‎, ‎a concept defined in 1978 by Gutman‎, ‎is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$‎. ‎Also‎ ‎the Estrada index of $Gamma$‎, ‎which is defined in 2000 by Ernesto Estrada‎, ‎is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$‎. ‎In this paper‎, ‎we compute the eigen...

متن کامل

Some Cayley graphs for simple groups

Let 93 be a finite connected regular graph of degree k>2 having n vertices and diameter d. Fix a vertex x. Each vertex at distance i<d from x is joined to at most k-l vertices at distance i+l from X. Thus, n=1+k+k(k-1)+k(k-1)2+*..+ k(kl)d-’ zz2kd, so that dz (log +n)/(log k), where logarithms are to the base 2. This argument suggests that graphs B in which dr Clog n have a “tree-like structure”...

متن کامل

Integral Cayley Graphs over Abelian Groups

Let Γ be a finite, additive group, S ⊆ Γ, 0 6∈ S, − S = {−s : s ∈ S} = S. The undirected Cayley graph Cay(Γ, S) has vertex set Γ and edge set {{a, b} : a, b ∈ Γ, a − b ∈ S}. A graph is called integral, if all of its eigenvalues are integers. For an abelian group Γ we show that Cay(Γ, S) is integral, if S belongs to the Boolean algebra B(Γ) generated by the subgroups of Γ. The converse is proven...

متن کامل

On locally primitive Cayley graphs of finite simple groups

A graph /is said to be G-locally primitive, where G is a subgroup of automorphisms of /-, if the stabiliser G~ of a vertex a acts primitively on the s e t / ( a ) of vertices of / adjacent to or. For a finite non-abelian simple group L and a Cayiey subset S of L, suppose that L <3 G...<Aut( L ) , and the Cayley graph /= Cay ( L, S) is G-locally primitive. In this paper we prove that L is a simp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2022

ISSN: ['0925-9899', '1572-9192']

DOI: https://doi.org/10.1007/s10801-022-01166-7